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➢ Cryptography

➢ Gene prediction

➢ Network/ Circuit Routing

➢ Test Pattern Generation

➢ AI / Mission Planning

➢ ML model robustness verification

➢ Finance ➢ Logistics 

➢ Material design

Combinatorial optimization: Find assignment of discrete variables (x) corresponding 

      to optimal value, e.g., minimum, of a cost function

Combinatorial Optimization

Many applications in industrial and scientific scenarios:

𝐻(𝐱) = ෍
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𝐽𝑖1
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Major Types of Combinatorial Optimization
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▪ Quadratic Unconstrained Binary Optimization (QUBO): Find binary vector  

               𝐱 ∈ 0,1  that minimizes quadratic cost function 𝑄(𝐱)

𝑄 𝐱 = 1 − 𝑥1 − 𝑥2 − 𝑥3 + 𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥2𝑥3 + 𝑥1𝑥5

▪ Polynomial Unconstrained Binary Optimization (PUBO): Find binary vector  

               𝐱 ∈ 0,1  that minimizes (multilinear) polynomial cost function 𝑃(𝐱)

𝑃 𝐱 = 1 − 𝑥1 − 𝑥2 − 𝑥3 + 𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥2𝑥3 + 𝑥1𝑥5 − 𝑥1𝑥2𝑥3 − 𝑥1𝑥4𝑥5

▪ K-SAT:     Find assignment of Boolean variables 𝑣 to satisfy CNF-type Boolean    

                    expression. Equivalent to PUBO via 𝑣 = 1 − 𝑥 , ҧ𝑣 = 𝑥, ٿ → +, ڀ →×

 3-SAT =  (𝑣1 ڀ 𝑣2 ڀ 𝑣3) ٿ (𝑣1 ڀ 𝑣4 ڀ 𝑣5)  →  𝑃 𝐱 = 1 − 𝑥1 1 − 𝑥2 1 − 𝑥3 + 𝑥1 1 − 𝑥4 𝑥5

PUBO and K-SAT can be converted to equivalent QUBO by order reduction methods
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Motivation for High Order Solvers
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Conversion to QUBO results in heavy overhead, i.e., slower convergence due to 

larger configuration space due auxiliary variables and new shallow minima in the 

energy landscape.

→ Need to solve higher-order problems using native formulation 

Contemporary SOTA approaches are 

either QUBO solvers or dedicated 3-SAT 

solvers

Many practical problems are described by higher-order cost functions....
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Combinatorial Optimization Algorithms
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▪ Many Algorithms: 

– Complete algorithms, local search, ant colony, genetic,… 

– Time to global minima scales exponentially with # variables for hard problem

▪ Heuristic algorithms:

- Ising Machines (and closely related Hopfield Neural Networks and Boltzmann 

Machines) implements gradient-descent-like heuristic algorithms 

- Efficient local search algorithms, e.g. WalkSAT, that solve SAT problems in 

native form and rely on gradient-descent-like heuristics

The common implementation challenge for high-order solvers is efficient 

hardware for computing cost function derivatives or Boolean function gains 
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Our Approach: Solve Problems in Native High-Order Form
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K-SAT PUBO QUBO

Hardware 

approach

K-SAT 

Solver

PUBO 

Solver

QUBO 

Solver

Original

problem 

formulation

The goal is to develop arbitrary-order (any K or order) solver that preserves high-

order interactions and solve problem in the native (SAT or PUBO or PUSO) space

                        → KLIMA: K-Local In-Memory Accelerator
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SAT Solver: Parallel Clause Evaluation with In-Memory Computing

▪ Example:

1

1

0

2

𝑥1 𝑥1 𝑥2 𝑥2 𝑥3 𝑥3

𝑥1 ∨ 𝑥2 ∨ 𝑥3

𝑥1 ∨ 𝑥3

𝑥2 ∨ 𝑥3

𝑥1 ∨ 𝑥2 ∨ 𝑥3

Variable 

selection 

heuristics 

0      1     1      0      1     0   

✓

✓



✓

- #clauses × #literals crossbar circuit

- Each clause of a problem is 

mapped to single row

- Zero sensed current indicates 

unsatisfied clause

- “1” unit sensed current indicates 

weakly satisfied clause

▪ Main Idea: Parallel clause evaluation with in-memory computing on dense crossbar memory circuit 

3SAT = (𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ 𝑥1 ∨ 𝑥3 ∧ 𝑥2 ∨ 𝑥3

S. Park et al. ASP-DAC’21 29-34 (2021); G. Pedretti et al. Zeroth and 

high-order logic with content addressable memories. IEDM’23 (2023)

7

clause

= high conductance = low conductance
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0     1     1     0     1     0   1     x     x     1     x     1   x     0     0     x     2     x   

Massively parallel (in-memory) computation of gains, irrespective of K

𝑥1 𝑥1 𝑥2 𝑥2 𝑥3 𝑥3

𝑥1 ∨ 𝑥2 ∨ 𝑥3

𝑥1 ∨ 𝑥3

𝑥2 ∨ 𝑥3

𝑥1 ∨ 𝑥2 ∨ 𝑥3

𝑥1 𝑥1 𝑥2 𝑥2 𝑥3 𝑥3

𝑥1 ∨ 𝑥2 ∨ 𝑥3

𝑥1 ∨ 𝑥3

𝑥2 ∨ 𝑥3

𝑥1 ∨ 𝑥2 ∨ 𝑥3

𝑥1 𝑥1 𝑥2 𝑥2 𝑥3 𝑥3

𝑥1 ∨ 𝑥2 ∨ 𝑥3

𝑥1 ∨ 𝑥3

𝑥2 ∨ 𝑥3

𝑥1 ∨ 𝑥2 ∨ 𝑥3

Cost function decrease w.r.t. variable state change    =     Make Value         –        Break Value

# new clauses satisfied  
# previously satisfied clauses 

becoming unsatisfied 

▪ Clause evaluation ▪ Make  computation ▪ Break computation

▪ Gain computation

SAT Solver: Parallel Gain (Gradient) In-Memory Computation

1

1

0

2

Key idea: Take full advantage of analog outputs and reverse signal flow to compute make and break values 

Energy decrease w.r.t.  x3    =                       1  (Make Value)                      – 2  (Break Value)      =      -1   

0

0

1

0

1

1

0

0

✓

✓



✓

T. Bhattacharya et al., Computing High-

Degree Polynomial Gradients in Memory, 

Nature Comm 2025
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HPE’s “SuperT” Memristor Prototype System 

▪ In-house memristors BEOL-integrated with 180nm TSMC 

CMOS circuits 

▪ Crossbar arrays & CMOS periphery

- 2x 64x64 memristor 1T1M crossbar arrays

- Integrated DACs/TIAs/ADCs

- >5-bit mixed-signal VMM computation  

- TaOx memristor device technology 

- scalable to 25 nm, < 1ns and <fJ write time & energy

- 10 year retention and >105 switching endurance

- up to 8 bit effective bit precision 

9
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ReRAM-Based Accelerator Prototype for K-SAT Problems

T. Bhattacharya 

et al, Nature 

Comm 2024

- WalkSAT/SKC algorithm

- In-memory computing 

crossbar operation are 

implemented experimentally, 

while the remaining functions 

are emulated on PC 

1 2

14-variable 64-

clause random 

uniform 3SAT 

problem

▪ Main results: Run-length distribution 
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▪ Setup & Chip Micrograph ▪ Top level diagram
• Custom 256x128 10T bi-directional 

SRAM array with simultaneous clause 

evaluation and make/break/gradient 

computation

• Analog input Winner-Take-All (WTA) 

circuit for selecting variable with minimum 

break-value, resulting in ADC-free 

operations

• Two operation modes: 

o Integrated to run WalkSAT/SKC on 

any SAT instance in real time

o Hybrid to run arbitrary heuristic using 

off-chip ADCs to digitize gradient 

information and host PC to 

synchronize control sequence

(shaded boxes = digital, rest analog)

1.3 mm

1
.3

 m
m

SRAM-Based Accelerator Prototype for K-SAT Problems

11

T. Bhattacharya et al, VLSISymp'25
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Experimental Results on SATLIB Problems

T. Bhattacharya et al, VLSISymp’25 & HotChips’25

T
im

e
 t
o
 s

o
lu

ti
o
n
 (

s
)

E
n
e
rg

y
 t

o
 s

o
lu

ti
o
n
 (

J
)

Random uniform

Semiprime factoring



Dmitri Strukov – Nature Conference, Beijing 2019 

Quadratic Ising Machine Implementation for QUBO 
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𝐶𝑖
d𝑈𝑖

d𝑡
= σ𝑗

𝑁 𝑇𝑖𝑗 𝑉𝑗 + 𝑉bias𝐵𝑖 − 𝑈𝑖𝐺𝑖, 

where 𝑈𝑖 = 𝑔𝑖
−1 𝑉𝑖  and 𝐺𝑖= σ𝑗

𝑁 𝑇𝑖𝑗+ 𝐵𝑖

   

𝐸 = −
1

2
෍

𝑖

𝑁

෍

𝑗

𝑁

𝑇𝑖𝑗 𝑉𝑖𝑉𝑗 + 𝑉bias𝐵𝑖𝑉𝑖

❑ Typical system of ODEs and ...

❑ ... energy (cost) function governing dynamics 

T1,1 T1,2
T1,N C1

T2,1 T2,2
T2,N

TN,1 TN,2
TN,N

C2

CN

U1

U2

UN

V1

V2

VN

B1

B2

BN

Vbias

𝑔1

𝑔2

𝑔𝑁

quadratic spin interaction

(coupling weights)

spins 

(neurons)

∝
𝜕𝐸

𝜕Vi

- Network seeks minima of 

quadratic E by following 

gradient descent-like 

dynamics

- Pre-activation is a partial 

derivative of energy 

function with respect to 

mapped variable 

Coupling weights are the most critical component, dot product is the most common operation

Our approach: electronic (mixed-signal, in-memory-computing) implementation with

- Dense coupling weights: eFlash, metal-oxide memristors or SRAM for binary weights

- CMOS for the remaining functions (less numerous spins etc.)

How to design higher-order Ising machines to solve PUBO natively? 

    → requires efficient hardware for computing higher order derivatives
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High-Order Ising Machines
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T. Bhattacharya et al., “Unified framework for efficient high-

order Ising machine hardware implementations” (2024)

▪ High-level implementation

𝐸 = 𝑎1x1x2 + 𝑎2x1x3 + 𝑎3x1x2x3 + 𝑎4x1x2x4 

unit-coefficient 

monomialmonomial

monomial 

coefficient 

▪ PUBO energy function example

𝜕𝐸

𝜕x1  
= 𝑎1x2 

+ 𝑎2x3 
+ 𝑎3x2x3 

+ 𝑎4x2x4 

𝜕𝐸

𝜕x2  
= 𝑎1x1 

+ 𝑎3x1x3 
+ 𝑎4x1x4 

𝜕𝐸

𝜕x3  
=  𝑎2x1 

+ 𝑎3x1x2 

𝜕𝐸

𝜕x4  
=  𝑎4x1x2 

▪ Energy partial derivatives assuming 

real-valued (continuous IMs) x:

derivative monomial

▪ Derivative-type high-order Ising machine

(derivative monomials) 

product generation

summation of (derivative 

product) products
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Product Generation with Binary Variables
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∆𝐸x1 = 𝑎1𝛿[ ҧ𝑥2] + 𝑎2𝛿[ ҧ𝑥3] + 𝑎3𝛿 ҧ𝑥2 + ҧ𝑥3  + 𝑎4𝛿 ҧ𝑥2 + ҧ𝑥4 × (2x1 − 1)

 ∆𝐸x2 = 𝑎1𝛿 ҧ𝑥1 +  + 𝑎3𝛿 ҧ𝑥1 + ҧ𝑥3  + 𝑎4𝛿[ ҧ𝑥1 + ҧ𝑥4] × (2x2 − 1)

 ∆𝐸x3 =  𝑎2𝛿 ҧ𝑥1  + 𝑎3𝛿[ ҧ𝑥1 + ҧ𝑥2] × (2x3 − 1)

 ∆𝐸x4 =  𝑎4𝛿[ ҧ𝑥1 + ҧ𝑥2]  × (2x4 − 1)

x2x3 = δ ҧ𝑥2 + ҧ𝑥3   where Kroneker function δ(𝑦) = ቊ
1, 𝑦 = 0 
0, otherwise

   

because for binary variable product

flipping direction sign 

𝐸 = 𝑎1x1x2 + 𝑎2x1x3 + 𝑎3x1x2x3 + 𝑎4x1x2x4 

unit-coefficient 

monomialmonomial

monomial 

coefficient 

▪ PUBO energy function example

▪ Differentials

▪ Product implementation

ҧ𝑥1 ҧ𝑥2   ҧ𝑥3 ҧ𝑥4

ҧ𝑥1 + ҧ𝑥2

ҧ𝑥1 + ҧ𝑥3

ҧ𝑥1 + ҧ𝑥4

ҧ𝑥2 + ҧ𝑥3

ҧ𝑥2 + ҧ𝑥4

𝛿

𝛿

𝛿

𝛿

𝛿

x1x2

x1x3

x1x4

x2x3

x2x4

- Circuit (crossbar) complexity is independent of 

the problem order K

T. Bhattacharya et al., “Unified framework for efficient high-order Ising machine hardware implementations” (2024)
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Area Advantage Modeling for Benchmark Problems
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      problem      design  operation       required

       encoding      type  type          weights

 ------------------------------------------------------------------------------

        PUBO      derivative       discrete  analog

        PUBO      monomial       discrete  binary

        PUBO       hybrid  discrete         analog

      shifted PUBO  hybrid  discrete/continuous    analog

        PUSO       monomial  discrete  binary

        CNF        clause        discrete  binary

▪ Density advantage over QUBO implementation

- Shifted PUBO = shift variable ranges in pre-processing step

- Hybrid and clause designs are best for most studied problems

- PUSO (spin-based objective function) design is best for XOR-

dominated SATs

- Binary-weight discrete IM are viable for SRAM-based designs

T. Bhattacharya et al., “Unified framework for efficient high-order Ising machine hardware implementations”, 2024

- Hardware area is approximated by the number of crosspoint devices in xbar implementation

- Circuit area of proposed approaches is independent of the problem order K 

Native is better

QUBO is better

Average Problem Order
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▪ Area estimates for SRAM-based FPIA

cv

×
1
0

9

cv

>10K (>100K) variables in ~1 cm2 in 65 nm (22 nm) CMOS process for hard 3-SAT problems!

F = 65 nm

T. Bhattacharya et al., “HO-

FPIA: High-Order Field-

Programmable Ising Arrays 

with In-Memory 

Computing”, ISLVSI’24

FPIA: Field Programmable Ising Arrays
▪ FPIA’s main features: 

- Takes advantage of problem sparsity 

-  Break a larger “logical” coupling array into 

many smaller ones, while ensuring inter-

tile connectivity between spins 

- Classical island-type field programmable 

gate array (FPGA) architecture 

- Reuse routing architecture and tools 

developed in FPGA community
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Summary and Future Work

▪ Experimental demo SRAM-based arbitrarily-order SAT solver outperforming SOTA solvers

▪ Generalized framework for building efficient arbitrary order Ising machines for solving PUBO

▪ Top-level architecture to implement up to 100K variable hard 3-SAT problems on a single chip 

▪ Testing of 2nd generation SRAM-based SAT solver tile prototype

18

>10x expected 

improvement in speed 

and >2x energy on 

uniform 3SAT 

compared to 1st 

generation

T. Bhattacharya et al, HotChips’25
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Thank You!

dimastrukov@ucsb.edu


	슬라이드 1: KLIMA: K-Local In-Memory Accelerator for Combinatorial Optimization
	슬라이드 2
	슬라이드 3: Major Types of Combinatorial Optimization
	슬라이드 4: Motivation for High Order Solvers
	슬라이드 5: Combinatorial Optimization Algorithms
	슬라이드 6: Our Approach: Solve Problems in Native High-Order Form
	슬라이드 7: SAT Solver: Parallel Clause Evaluation with In-Memory Computing
	슬라이드 8: SAT Solver: Parallel Gain (Gradient) In-Memory Computation
	슬라이드 9: HPE’s “SuperT” Memristor Prototype System 
	슬라이드 10
	슬라이드 11
	슬라이드 12
	슬라이드 13: Quadratic Ising Machine Implementation for QUBO 
	슬라이드 14: High-Order Ising Machines
	슬라이드 15: Product Generation with Binary Variables
	슬라이드 16: Area Advantage Modeling for Benchmark Problems
	슬라이드 17
	슬라이드 18: Summary and Future Work
	슬라이드 19: Selected Publications
	슬라이드 20: Thank You!  dimastrukov@ucsb.edu

